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The eigenvalues of the bounded Ax'" oscillators 
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tPhysics Department, Visva-Bharati, Santiniketan 731235, West Bengal, India 
$Department of Physics, T D B College, Raniganj, Burdwan, India 

Received 3 February 1983 

Abstract. The even- and odd-parity eigenvalues of the bounded pure AxZm oscillators are 
obtained as the roots of two equations derived explicitly. 

The unbounded anharmonic oscillators have been studied by a number of authors 
(Banerjee et a1 1978, Bender and Wu 1969, Loeffel et a1 1970, Fung et a1 1978, 
Drummond 198 1) using different perturbative techniques. Different non-perturbative 
techniques have also been applied by a number of authors (Biswas et a1 1971, 1973, 
Halpern 1973, Singh et a1 1978, Bozzolo et a1 1982, Killingbeck 1978, Austin and 
Killingbeck 1982). The perturbation series in terms of the coupling constant has its 
domain of applicability and most of the non-perturbative calculations require very 
elaborate computations for the energy eigenvalues. The method described by Killing- 
beck (1978) is, however, quite simple for obtaining the perturbation series for the 
energy without any calculation of the perturbed wavefunctions. The energy eigen- 
values of the pure quartic and quartic anharmonic oscillators are also obtained in a 
semi-empirical manner (Hioe and Montroll 1975, Hioe et a1 1978, Mathews et a1 
1981) using the extended WKB formula. The anharmonic oscillator problem is of 
much interest from the analytical, as well as the numerical, point of view due to its 
important physical applications. Bell (1945) studied the pure quartic oscillator in 
connection with the mode of plane rings of atoms. The knowledge of the exact 
eigenvalues of pure quartic anharmonic oscillators is of particular interest in molecular 
physics (Chan and Stellman 1963, Reid 1970). Recently Barakat and Rosner (1981) 
studied the pure x4  oscillator bounded by infinite potentials at x = *L and showed 
that the lower-order eigenvalues tend rapidly to the values of the unbounded oscillator 
as L is made larger. 

The purpose of this paper is to study the eigenvalues of the pure A x Z m  oscillators 
bounded by infinitely high potentials at x = *L. We have to solve the eigenvalue 
equation 

[ (d2/dx2)+E -Ax2"]I,b(~)=0, m = l , 2 , 3  , . . . ,  (1) 

subject to the boundary conditions I,b(iL) = 0. First of all we make the change of 
variable y = x/L so that (1) is transformed to the equation 

2 m + 2  with the boundary conditions $(y  = *l) = 0, E = EL2 and b = AL . 
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The symmetry of equation (2)  implies that $ (y )  has even and odd power series 
m 

$ e ( ~ ) =  C A2ny 9 

n = O  
(3) 2n  

where the superscripts e and o refer to the even- and odd-parity solutions. It should 
be noted that the replacement of n by n +; in the even-series solution reproduces 
the odd-series solution. The coefficients AZn and A2n+l  satisfy a set of recursion 
relations. We put A ,  = A  = 1 and apply the recursion relations repeatedly to evaluate 

m X 

f ( ) ( ~ ) =  1 A2n+1* 
n=O 

f e ( & ) =  1 A2n9 
n = O  

Collecting the terms of same order of 6 we finally obtain 
a W 

f e ( ~ ) = c 0 s J E +  1 b k  1 (-l)"C',ka", 
k = l  n = O  

d &  k = l  n=O 

where the coefficients C',;;." are given by 

c;," = [ (2m + 2 + U )(2m + 1 + U )I- l ,  

c',;" = [ ( 2 m + 2 n + 2 + ~ ) ( 2 m + 2 n + 1 + ~ ) ] - ' [ ~ ' , . - ~ ~ ~  + ( ( 2 n  +U)!)-'], n 2 1 ,  

c;; = K 2 2 ,  
C" OK-I  O 

(2Km +2K + ~ ) ( 2 K m  + 2 K - 1 + ~ ) '  

C" nK-1 O + c > z l K  c;," = n 2 1 ,  K 2 2 ,  (2Km +2K +2n +u)(2Km +2K +2n - 1 +U)' 

with U = 0 for the even series and U = 1 for the odd series. Equations ( 5 )  and (6) may 
be written as 

m 

f e ( E ) = C O S J E +  c (-l)nae,En, 
n = O  

.- 
sin JE a 

f%)=-+ 1 (-l)na;En, JL n = O  

where 
X 

c y e , ' O =  bKC',.,". 
k = l  

The zeros of the functionsPso(&) give us the eigenvalues of the even- and odd-parity 
solutions. In these equations the coefficients of successive powers of E alternate in 
sign when A is positive, showing that there are no real negative eigenvalues. It should 
also be noted that for a particular value of m the coefficients C?; decrease very fast 
with both n and K ,  so that in finding the roots only a few terms are to be considered. 
When b < 1 the perturbation series in terms of b or the coupling constant A may be 
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obtained from ( 5 )  and (6) by retaining terms up to certain orders in b. When the 
oscillator is confined to a very small region of space the eigenvalues may be found 
from the zeros of cos J, and (sin JL)/JL: 

(9) 

E: = n 2 T 2 / L 2 ,  n = l , 2 , 3  , . . . .  (10) 

1 2  2 E: = ( n  +z) T /L2 ,  n =0 ,  1, 2 , .  . , 

Equations (9) and (10) show that the oscillator energy increases rapidly with the 
decrease in the dimension of the confinement of the oscillator when b is very small, 

Equations (7) and (8) are suitable for numerical evaluation of the eigenvalues of 
the bounded oscillators for any values of A and L, and integer values of m. Since no 
approximation is made in deriving the equations and the explicit expressions of the 
functions fe,O(&) are given, one may compute the eigenvalues to a high degree of 
accuracy by considering a large number of terms of the infinite series. We may find 
the eigenvalues of the unbounded oscillators as observed by Barakat and Rosner 
(1981) by gradually making L large. In table 1 we tabulate the first four eigenvalues 
of confined A x Z m  oscillators with A = 1, m = 1, 2 ,3 ,4 ,  5 and L = 1 ,2 ,3 ,4 .  We find 
from the table that when m is large the lower-order eigenvalues remain almost 
unchanged for L = 2 , 3  and 4 where the potentials are made infinitely high. This is 
because for large m the potential function x~~ becomes effectively infinite at x = 2 
in comparison to its values around x = 0. Our values for m = 2 with large L may be 
compared with the first four eigenvalues for the unbounded oscillator as given by 
Chan and Stellman (1963): 1.060 362, 3.799 657, 7.455 702, 11.644 75. The exact 
eigenvalues for the unbounded oscillator for m = 1 (the harmonic oscillator problem) 
are given by E, = (2n  + l ) ,  n = 0 ,1 ,2 ,  . . . . Thus we find that the lower-order eigen- 
values tend rapidly to the values of the unbounded oscillators as L is made larger. 

The method described here is applicable to any form of bounded potentials having 
no singularity for finite values of x .  The potential function can be expressed as a 
Taylor series about x = 0 and then the series solution is applicable to the problem. 

Table 1. First four eigenvalues of confined Ax2"' oscillators with A = 1, m = 1, 2, 3.4, 5 
and L = 1, 2, 3 ,4 .  

3 4 kl 2 3 4 

1 2.597 
10.151 
22.518 
39.799 

2 2.508 
9.983 

22.364 
39.654 

3 2.485 
9.926 

22.296 
39.588 

1.075 
3.530 
6.800 

11.169 

1.073 
3.882 
7.784 

12.584 

1.145 
4.343 
9.090 

14.991 

1.001 
3.012 
5.082 
7.328 

1.060 
3.800 
7.456 

11.645 

1.145 
4.339 
9.073 

14.935 

1.000 
3.000 
5.000 
7.000 

1.060 
3.800 
7.456 

11.645 

1.145 
4.339 
9.073 

14.935 

4 2.477 
9.901 

22.261 
39.551 

5 2.473 
9.889 

22.242 
39.528 

1.226 
4.756 

10.245 
17.343 

1.296 
5.098 

11.154 
19.189 

1.226 
4.756 

10.245 
17.343 

1.296 
5.098 

11.154 
19.189 

1.226 
4.756 

10.245 
17.343 

1.296 
5.098 

11.154 
19.189 
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One should be cautious in applying the series method for the unbounded oscillator. 
The method fails even for the harmonic oscillator problem. It is easy to show that 
the Hill determinant method (Biswas et a1 1971, 1973, Chaudhuri 1983) fails com- 
pletely for the harmonic oscillator problem if the exponential x term is not factored 
out from the wavefunction. For the unbounded oscillator the main problem of solving 
the differential equation (1) by the method of series solution about x = 0 is that the 
point at infinity is an irregular singular point of the differential equation so that the 
boundary conditions limx+rco $(x)  = 0 cannot be imposed on it. For the bounded 
oscillator problem the boundary conditions are $(*L) = 0, and since the series solutions 
are valid for all finite values of x there is no problem in imposing the boundary 
conditions. For the unbounded eigenvalue problem one has to find a proper conver- 
gence factor for the wavefunction (Ginsburg 1982, Killingbeck 1981). The conver- 
gence factor is not required for the evaluation of the energy eigenvalues of the bounded 
potential problem by the infinite series method. It is always better to start with the 
bounded eigenvalue problem where the series solution is applicable and then make 
the dimension of the confinement of the oscillator gradually large. By this method 
the eigenvalues of anharmonic oscillators can be found easily. 

It should be mentioned here that our finite box method is similar to the power 
series method based on the renormalisation approach (Killingbeck 1981, Austin and 
Killingbeck 1982). Equations ( 5 )  and (6) are suitable for numerical evaluation of the 
eigenvalues for small negative values of A. The limit A -.O does not give rise to any 
problem in our case, whereas Rayleigh-Schrodinger perturbation theory is sometimes 
not applicable (Khare 1981) in the case of anharmonic oscillators for A < 0. However, 
the problem of stabilisation effect (Hazi and Taylor 1970) may set in for negative A 
as in the renormalisation series approach. This point is still under investigation. 
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